Incorporating stochastic analysis in wind turbine design: data-driven random temporal-spatial parameterization and uncertainty quantification

نویسندگان

  • Qiang Guo
  • Eugene Takle
  • Frank Peters
  • Pranav Shrotriya
  • Yaqin Liu
چکیده

Wind turbines reliability is affected by stochastic factors in the turbulent inflow and wind turbine structures. On one hand, the variability in wind dynamics and the inherent stochastic structures result in random loads on wind turbine rotor and tower. On the other hand, the inherent structural uncertainties caused by imperfect control of manufacturing process introduce unpredictable failures and decreases wind generators availability. Therefore, to improve reliability, it is important to incorporate the variability in wind dynamics, and the inherent stochastic structures in analyzing and designing the next generation wind-turbines. In order to perform stochastic analysis on wind turbine, there are several improvements need to be made. Current stochastic wind turbine analyses are mostly based on incomplete turbulence input models. These models either failed to account for temporal variation of the stochastic wind field or unable to preserve spatial coherence which is a very important property that describes turbulence structure. On the subject of modeling wind turbine, most commonly used wind turbine design code is based on stead, lumped component blade models which lack the ability to describe the complex 3D fluid-structure interaction (FSI); which is essential to provide precise blade stress distribution and deformation details. Finally, when it comes to analyzing simulation results, most of existing work are done by analyzing the time response of wind turbine, without looking at the stochastic nature of performance of wind turbines, and its relationship between stochastic sources in turbulent inflow and turbine structure. In this work, we first develop a data driven temporal and spatial decomposition (TSD), which is capable of modeling any given large wind data set, to construct a low-dimensional yet realistic stochastic wind flow model. Results of several numerical examples on the TSD model show good consistency between given measured data and simulated synthetic turbulence. After that, a stochastic simulation based on TSD simulated full-field turbulence and a simplified wind turbine model is performed. The result of this analysis shows the adequacy of using TSD as

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporating stochastic analysis in wind turbine design: data-driven random temporal-spatial parameterization and uncertainty quantication

Wind turbines reliability is affected by stochastic factors in the turbulent inflow and wind turbine structures. On one hand, the variability in wind dynamics and the inherent stochastic structures result in random loads on wind turbine rotor and tower. On the other hand, the inherent structural uncertainties caused by imperfect control of manufacturing process introduce unpredictable failures ...

متن کامل

Improving Data-based Wind Turbine Using Measured Data Foggy Method

The purpose of this paper is to improve the modeling of the data-driven wind turbine system that receives data from noise signals. Most of the data on industrial systems is noisely and data noise is inevitable and natural. The method and idea proposed in this paper, Data Fogging, significantly reduce the impact of noise on data-driven wind turbine system modeling, which is the basis of this met...

متن کامل

A Computational Statistics Approach to Stochastic Inverse Problems and Uncertainty Quantification in Heat Transfer

As most engineering systems and processes operate in an uncertain environment, it becomes increasingly important to address their analysis and inverse design in a stochastic manner using statistical data-driven methods. Recent advances in computational Bayesian and spatial statistics enable complete and efficient solution procedures to such problems. Herein, a novel framework based on Bayesian ...

متن کامل

Dynamic characterization and predictability analysis of wind speed and wind power time series in Spain wind farm

The renewable energy resources such as wind power have recently attracted more researchers’ attention. It is mainly due to the aggressive energy consumption, high pollution and cost of fossil fuels. In this era, the future fluctuations of these time series should be predicted to increase the reliability of the power network. In this paper, the dynamic characteristics and short-term predictabili...

متن کامل

Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran

     Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016